80083

HashMap、HashTable 和 ConcurrentHashMap 线程安全问题

<h2 id="一hashmap">一、HashMap</h2>

HashMap 是线程不安全的。

JDK 1.7 HashMap 采用数组 + 链表的数据结构,多线程背景下,在数组扩容的时候,存在 Entry 链死循环和数据丢失Question。

JDK 1.8 HashMap 采用数组 + 链表 + 红黑二叉树的数据结构,优化了 1.7 中数组扩容的方案,解决了 Entry 链死循环和数据丢失Question。但是多线程背景下,put 方法存在数据覆盖的Question。

<h3 id="中扩容引发的线程不安全分析">1.7 中扩容引发的线程不安全分析</h3> void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) { while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }

这段代码是 HashMap 的扩容操作,重新定位每个桶的下标,并采用头插法将元素迁移到新数组中。头插法会将链表的顺序翻转,这也是形成死循环的关键点。

假设现在有两个线程A、B同时对下面这个 HashMap 进行扩容操作:

正常扩容后的结果是下面这样的:

但是当线程A执行到上面 transfer 函数的第11行代码时,CPU 时间片耗尽,线程A被挂起。即如下图中位置所示:

此时线程A中:e=3、next=7、e.next=null

当线程A的时间片耗尽后,CPU 开始执行线程B,并在线程B中成功的完成了数据迁移:

重点来了,根据 Java 内存模式可知,线程B执行完数据迁移后,此时主内存中 newTable 和 table 都是最新的,也就是说:7.next=3、3.next=null

随后线程A获得CPU时间片继续执行 newTable[i] = e,将3放入新数组对应的位置,执行完此轮循环后线程A的情况如下:

接着继续执行下一轮循环,此时 e=7,从主内存中读取 e.next 时发现主内存中 7.next=3,于是乎next=3,并将 7 采用头插法的方式放入新数组中,并继续执行完此轮循环,结果如下:

执行下一次循环可以发现,next=e.next=null,所以此轮循环将会是最后一轮循环。接下来当执行完e.next=newTable[i]即3.next=7后,3和7之间就相互连接了,当执行完newTable[i]=e后,3被头插法重新插入到链表中,执行结果如下图所示:

上面说了此时 e.next=null 即 next=null,当执行完 e=null 后,将不会进行下一轮循环。到此线程A、B的扩容操作完成,很明显当线程A执行完后,HashMap 中出现了环形结构,当在以后对该 HashMap 进行操作时会出现死循环。

并且从上图可以发现,元素5在扩容期间被莫名的丢失了,这就发生了数据丢失的Question。

<h3 id="中-put-方法数据覆盖Question分析">1.8 中 put 方法数据覆盖Question分析</h3>

根据上面JDK1.7出现的Question,在JDK1.8中已经得到了很好的解决,如果你去阅读1.8的源码会发现找不到 transfer 函数,因为 JDK1.8 直接在 resize 函数中完成了数据迁移。另外说一句,JDK1.8在进行元素插入时使用的是尾插法。

为什么说JDK1.8会出现数据覆盖的情况喃,我们来看一下下面这段JDK1.8中的put操作代码:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) // 如果没有hash碰撞则直接插入元素 tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }

其中第六行代码是判断是否出现 hash 碰撞,假设两个线程A、B都在进行 put 操作,并且 hash 函数计算出的插入下标是相同的,当线程A 执行完第六行代码后由于时间片耗尽导致被挂起,而线程B得到时间片后在该下标处插入了元素,完成了正常的插入,然后线程A获得时间片,由于之前已经进行了 hash 碰撞的判断,所有此时不会再进行判断,而是直接进行插入,这就导致了线程B插入的数据被线程A覆盖了,从而线程不安全。

除此之前,还有就是代码的第38行处有个 ++size,我们这样想,还是线程A、B,这两个线程同时进行 put 操作时,假设当前 HashMap 的zise大小为10,当线程A执行到第38行代码时,从主内存中获得size的值为10后准备进行+1操作,但是由于时间片耗尽只好让出CPU,线程B快乐的拿到CPU还是从主内存中拿到size的值10进行+1操作,完成了put操作并将size=11写回主内存,然后线程A再次拿到CPU并继续执行(此时size的值仍为10),当执行完put操作后,还是将size=11写回内存,此时,线程A、B都执行了一次put操作,但是size的值只增加了1,所有说还是由于数据覆盖又导致了线程不安全。

<h2 id="二hashtable">二、HashTable</h2>

HashTable 是线程安全的。

HashTable 容器使用 synchronized 来保证线程安全,但在线程竞争激烈的情况下 HashTable 的效率非常低下。因为当一个线程访问 HashTable 的同步方法,其他线程也访问 HashTable 的同步方法时,会进入阻塞或轮询状态。如线程1使用 put 进行元素添加,线程2不但不能使用 put 方法添加元素,也不能使用 get 方法来获取元素,所以竞争越激烈效率越低。

public synchronized V get(Object key) { Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return (V)e.value; } } return null; } <h2 id="三concurrenthashmap">三、ConcurrentHashMap</h2>

ConcurrentHashMap 线程安全的。

<b>JDK 1.7 ConcurrentHashMap </b> 采用数组 + Segment + 分段锁的方式实现。分段锁技术将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。

从上面的结构我们可以了解到,ConcurrentHashMap 定位一个元素的过程需要进行两次 Hash 操作。第一次 Hash 定位到 Segment,第二次 Hash 定位到元素所在的链表的头部。

这一种结构写操作的时候只对元素所在的Segment进行加锁即可,不会影响到其他的 Segment,这样,在最理想的情况下,ConcurrentHashMap 可以最高同时支持Segment数量大小的写操作(刚好这些写操作都非常平均地分布在所有的Segment上)。

这一种结构的带来的副作用是Hash的过程要比普通的 HashMap 要长。

<b>JDK 1.8 ConcurrentHashMap </b> 采用数组 + 链表 + 红黑树的方式实现,结构基本上和 1.8 中的 HashMap 一样,不过大量的利用了 volatile,final,CAS 等 lock-free 技术来减少锁竞争对于性能的影响,从而保证线程安全性。

<h2 id="附录">附录</h2> <ul><li>学习 util.concurrent 包,真是感慨 Doug Lea 的智慧。</li> <li>上文 HashMap 线程不安全的分析摘抄自:https://blog.csdn.net/swpu_ocean/article/details/88917958</li> </ul>

来源:博客园

作者:JMCui

链接:https://www.cnblogs.com/jmcui/p/11422083.html

Recommend